基于深度学习的目标检测原理与应用在线阅读
会员

基于深度学习的目标检测原理与应用

翟中华等编著
开会员,本书免费读 >

计算机网络人工智能9.1万字

更新时间:2023-11-20 19:57:36 最新章节:插图

立即阅读
加书架
下载
听书

书籍简介

本书遵循循序渐进、深入浅出的理念,引领读者夯实相关基础知识,掌握传统目标检测方法,再逐步过渡到深度学习的基本概念及分类用法,进而深入讲解目标检测的两阶段深度学习方法、一阶段学习方法,即从以R-CNN为代表的两阶段深度学习方法、以YOLO系列为代表的一阶段学习方法等,层层揭开深度学习用于目标检测的“神秘面纱”,探究其中的奥秘。
上架时间:2023-08-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

翟中华等编著
主页

同类热门书

最新上架

  • 会员
    本书共分为8章,涵盖了从数据分析基础知识、常见的统计学方法到使用ChatGPT进行数据准备、数据清洗、数据特征提取、数据可视化、回归分析与预测建模、分类与聚类分析,以及深度学习和大数据分析等全面的内容。
    朱宁计算机10.7万字
  • 会员
    我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工
    秋叶 刘进新 姜梅 定秋枫计算机5.4万字
  • 会员
    本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络
    叶翰嘉 詹德川计算机19.3万字
  • 会员
    AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。
    徐英瑾计算机17.8万字
  • 会员
    本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大
    秋叶 佘有缘计算机7.3万字
  • 会员
    本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型
    文亮 江维计算机12.2万字
  • 会员
    本书通过81个官方案例解析、120个知识点梳理,深入浅出介绍了Sora的技术原理、特色功能、创新之处、优势特点、文案工具、脚本创作、提示词技巧、绘画工具、创意应用、变现方式等,帮助读者一本书全面精通Sora的AI视频生成技术。10大专题内容、108分钟视频,手机扫码可看精华内容,同时赠送了9大超值资源:74组AI绘画提示词、104个效果文件、165页PPT课件、31集《AI摄影》教学视频、40集《
    智发编著计算机6.8万字
  • 会员
    本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、
    唐宇迪 史卫亚 罗召勇 李琳 侯惠芳编著计算机0字
  • 会员
    本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。
    段小手计算机18万字