联邦学习技术及实战在线阅读
会员

联邦学习技术及实战

彭南博 王虎等
开会员,本书免费读 >

计算机网络人工智能18.5万字

更新时间:2021-04-16 16:41:29 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

本书针对产业界在智能化过程中普遍面临的数据不足问题,详细地阐述了联邦学习如何帮助企业引入更多数据、提升机器学习模型效果。互联网数据一般分布在不同的位置,受隐私保护法规限制不能共享,形成了“数据孤岛”。联邦学习像“数据孤岛”之间的特殊桥梁,通过传输变换后的临时变量,既能实现模型效果提升,又能确保隐私信息的安全。本书介绍了联邦学习技术的原理和实战经验,主要内容包括隐私保护、机器学习等基础知识,联邦求交、联邦特征工程算法,三种常见的联邦形式,以及工程架构、产业案例、数据资产定价等。
上架时间:2021-03-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

彭南博 王虎等
主页

最新上架

  • 会员
    本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,
    滕越主编计算机23万字
  • 会员
    本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大
    于俊 刘淇 程礼磊 程明月计算机12.3万字
  • 会员
    大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建
    王晓华计算机12.8万字
  • 会员
    《ChatGLM3大模型本地化部署、应用开发与微调》作为《PyTorch2.0深度学习从零开始学》的姊妹篇,专注于大模型的本地化部署、应用开发以及微调等。《ChatGLM3大模型本地化部署、应用开发与微调》不仅系统地阐述了深度学习大模型的核心理论,更注重实践应用,通过丰富的案例和场景,引导读者从理论走向实践,真正领悟和掌握大模型本地化应用的精髓。全书共分13章,全方位、多角度地展示了大模型本地化
    王晓华计算机13万字
  • 会员
    本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI
    庄建 腾海云 庄金兰计算机15.8万字
  • 会员
    本书以工作场景和具体任务来驱动,包括53个场景展示、85项任务模拟、237次提问示范,让完全不懂技术的小白,也能成为ChatGPT工具使用方面的行家。本书通过详细讲解具体任务的提问与追问方法,让ChatGPT成为每个人的工作好帮手,帮助人们提升工作效能,打造超能个体与超能团队。
    唐振伟编著计算机13.8万字
  • 会员
    在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次
    王鼎 赵明明 哈明鸣 任进计算机8.7万字
  • 会员
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容
    赵卫东 董亮编著计算机30.2万字
  • 会员
    本书主要介绍了人工智能的基础知识和实用技术。本书共8章,包括“人工智能:开启智慧新时代”“Python:人工智能开发语言”“线性回归:预测未来趋势”“分门别类:帮你‘分而治之’”“物以类聚:发现新簇群”“个性化推荐:主动满足你的需求”“语音识别:让机器对你言听计从”“人脸识别:机器也认识你”。本书以培养学生人工智能素养、人工智能思维和人工智能基本应用能力为设计理念,在内容的选取和安排上符合学生的学
    宋楚平 陈正东主编计算机12.9万字